Tabla de Contenidos

Introducción

Antecedentes. Breve historia de las ideas sobre el realismo y la causalidad. Estado del arte en la cuestión.

Bibliografía a utilizar

Beebee, H., The Oxford handbook of causation, (2010), Part I The History of Causation
Braver, L., A Thing of This World. A history of Continental Anti-Realism. (2007)
Levy, P. The semantic sphere 1 : computation, cognition, and information economy (2011)

Explicaciones mecanicistas

https://www.youtube.com/watch?v=Lw6aQdgrp1M
Scientific Explanation 3 - The Causal-Mechanical Model

¿Leyes naturales? La causalidad en la naturaleza

Nomological theories of causation

Espacio, tiempo y causalidad en física moderna, en Escritos sobre física y filosofía, Wolfgang Pauli, Debate
https://es.scribd.com/doc/193778352/Escritos-Sobre-Fisica-y-Filosofia-Wolfgang-Pauli

Space, time and causality, Richard Swinburne, Reidel (1983)
https://philpapers.org/rec/SWISTA

Schlick, Moritz, Filosofía de la naturaleza, 2002, Ediciones Encuentro (disponible en Biblioteca Uned)

Swinburne, Richard (ed), Space, Time and Causality, 1983 (disponible en biblioteca UNED)

Modelos y simulaciones

“las leyes naturales se expresan bajo la forma de ecuaciones diferenciales
— Schlick 2002 p. 67, ver Ecuaciones Diferenciales (libro-video)

“ Olivier Bournez and Amaury Pouly have proved an interesting theorem about modeling physical systems. They presented their paper at ICALP 2017 last month in Warsaw. Today Ken and I wish to explain their theorem and its possible connections to complexity theory. “
Modeling Reality - A surprising theorem about differential equations

“Modeling is the process of writing a differential equation to describe a physical situation”
Paul's Online Math Notes

Models and Simulations 7, Universitat de Barcelona, mayo 2016
book of abstracts

Interviews

Marc Lange

Marc Lange specializes in philosophy of science and related areas of metaphysics and epistemology, including parts of the philosophy of physics, philosophy of biology, and philosophy of mathematics. Here he discusses the necessity of laws of nature, why their necessity is contingent, whether these laws are immutable, what meta-laws are and what they’re for, laws and objective chance, why laws are laws because they are necessary rather than because they are laws, non-causal explanations in science and maths, explanation by constraint and why we don’t find them in maths, really statistical and dimensional explanations, why non-causal explanations are important in maths, and why despite their diversity non-causal explanations really are all explanations.