proyectos:tfg:casos:redes_neuronales:start
Diferencias
Muestra las diferencias entre dos versiones de la página.
| Ambos lados, revisión anteriorRevisión previaPróxima revisión | Revisión previa | ||
| proyectos:tfg:casos:redes_neuronales:start [2017/11/15 10:17] – [Contenido] Joaquín Herrero Pintado | proyectos:tfg:casos:redes_neuronales:start [2018/05/31 06:37] (actual) – [Bibliografía a usar] Joaquín Herrero Pintado | ||
|---|---|---|---|
| Línea 1: | Línea 1: | ||
| - | ====== Causalidad y redes neuronales: Big Data ====== | + | ====== Causalidad y redes neuronales ====== |
| ===== Bibliografía a usar ===== | ===== Bibliografía a usar ===== | ||
| + | * [[proyectos: | ||
| + | * [[proyectos: | ||
| * [[proyectos: | * [[proyectos: | ||
| + | * [[https:// | ||
| - | ===== Contenido ===== | ||
| - | The extreme case of model interpretability is when we are trying to establish a mechanistic model, that is, a model that actually captures the phenomena behind the data. Good examples include trying to guess whether two molecules (e.g. drugs, proteins, nucleic acids, etc.) interact in a particular cellular environment or hypothesizing how a particular marketing strategy is having an actual effect on sales. Nothing really beats old-style Bayesian methods informed by expert opinion in this realm; they are our best (if imperfect) way we have to represent and infer causality. Vicarious has some [[https:// | + | https:// |
| + | |||
| + | @ranilillanjum: | ||
| + | ===== Otras fuentes ===== | ||
| + | |||
| + | |||
| + | //"The extreme case of model interpretability is when we are trying to establish a mechanistic model, that is, a model that actually captures the phenomena behind the data. Good examples include trying to guess whether two molecules (e.g. drugs, proteins, nucleic acids, etc.) interact in a particular cellular environment or hypothesizing how a particular marketing strategy is having an actual effect on sales. Nothing really beats old-style Bayesian methods informed by expert opinion in this realm; they are our best (if imperfect) way we have to represent and infer causality. Vicarious has some [[https:// | ||
| --- http:// | --- http:// | ||
| - | [[https:// | + | //" |
| - | [[https:// | + | --- [[https:// |
| + | |||
| + | //" | ||
| + | --- [[https:// | ||
| + | **The Epistemology of Data Use: Sabina Leonelli ALS, Dec. 1, 2017** \\ | ||
| + | BSTRACT: This talk examines the epistemology of data by addressing the challenges raised by ‘big data science’, and particularly the dissemination and re-use of large datasets via intricate and nested infrastructures such as digital databases. Empirically, | ||
| + | --- https:// | ||
proyectos/tfg/casos/redes_neuronales/start.1510741033.txt.gz · Última modificación: por Joaquín Herrero Pintado
