Herramientas de usuario

Herramientas del sitio


proyectos:tfg:bibliografia:flack2017

Diferencias

Muestra las diferencias entre dos versiones de la página.

Enlace a la vista de comparación

Próxima revisión
Revisión previa
proyectos:tfg:bibliografia:flack2017 [2017/10/27 09:03]
127.0.0.1 editor externo
proyectos:tfg:bibliografia:flack2017 [2018/05/25 16:44] (actual)
Joaquín Herrero Pintado
Línea 1: Línea 1:
-====== Flack, ​J., Life’s Information Theory ======+====== Flack, ​Jessica, Life’s Information Theory ​(2017) ​======
  
-en mari Walker, S. (ed), 2017, From Matter to Life – Information and Causality+en Smari Walker, S. (ed), 2017, From Matter to Life – Information and Causality 
 + 
 +I propose that biological systems are information hierarchies organized into 
 +multiple functional space and time scales. This multi-scale structure results 
 +from the collective effects of components estimating, in evolutionary or 
 +ecological time, regularities in their environments by coarse-graining or 
 +compressing time-series data and using these perceived regularities to tune 
 +strategies. As coarse-grained (slow) variables become for components better 
 +predictors than microscopic behavior (which fluctuates),​ and component 
 +estimates of these variables converge, new levels of organization consolidate. 
 +This process gives the appearance of downward causation – as components 
 +tune to the consolidating level, variance at the component level decreases. 
 +Because the formation of new levels results from an interaction between 
 +component capacity for regularity extraction, consensus formation, and how 
 +structured the environment is, the new levels, and the macroscopic,​ slow 
 +variables describing them, are characterized by intrinsic subjectivity. Hence 
 +the process producing these variables is perhaps best viewed as a locally 
 +optimized collective computation performed by system components in their 
 +search for configurations that reduce environmental uncertainty. If this view 
 +is correct, identifying important, functional macroscopic variables in 
 +biological systems will require an understanding of biological computation. I 
 +will discuss how we can move toward identifying laws in biology by 
 +studying the computation inductively. This includes strategy extraction from 
 +data, construction of stochastic circuits that map micro to macro, dimensionreduction 
 +techniques to move toward an algorithmic theory for the 
 +macroscopic output, methods for quantifying circuit collectivity,​ and 
 +macroscopic tuning and control.
proyectos/tfg/bibliografia/flack2017.1509095004.txt.gz · Última modificación: 2017/11/08 02:20 (editor externo)